AP Calculus BC

Unit 10 Convergence and Divergence Tests

Use the Direct Comparison Test to show that the series either converge or diverge.

1)
$$\sum_{n=1}^{\infty} \frac{1+\cos n}{n^2}$$

2) $\sum_{n=1}^{\infty} \frac{2n}{3n-1}$
3) $\sum_{n=1}^{\infty} \frac{n+1}{n^2\sqrt{n}}$
4) $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$
5) $\sum_{n=1}^{\infty} \frac{3^{n-1}+1}{3^n}$
6) $\sum_{n=1}^{\infty} \frac{1}{1+\ln n}$

Use the Limit Comparison Test to show that the series either converge or diverge.

$$7) \sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n \qquad 8) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+2}} \qquad 9) \sum_{n=2}^{\infty} \frac{1}{(\ln n)^2} \\ 10) \sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n} \qquad 11) \sum_{n=1}^{\infty} \frac{10n+1}{n(n+1)(n+2)} \qquad 12) \sum_{n=3}^{\infty} \frac{5n^3-3n}{n^2(n-2)(n^2+5)} \\$$

What is the value of
$$\sum_{n=0}^{\infty} \left(-\frac{2}{3}\right)^n$$
?
(A) -2 (B) $-\frac{2}{5}$ (C) $\frac{3}{5}$ (D) 3 (E) The series diverges

For what values of p will both series $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ and $\sum_{n=1}^{\infty} \left(\frac{p}{2}\right)^n$ converge?

- (A) -2 only $(B) <math>-\frac{1}{2} only$ $(C) <math>\frac{1}{2} only$ $(D) <math>p < \frac{1}{2}$ and p > 2
- (E) There are no such values of p.

*Optional problems

Determine if the following series converge of diverge using the indicated test.

Ratio Test: 1.
$$\sum \frac{3^k}{k!}$$
 2. $\sum \frac{4^k}{k^2}$ 3. $\sum \frac{k!}{k^3}$
Root Test: 4. $\sum \left(\frac{4n-5}{2n+1}\right)^n$ 5. $\sum \frac{k}{5^k}$
Use any appropriate test to determine if the series converge or diverge

Use any appropriate test to determine if the series converge or diverge.

6.
$$\sum \frac{2^k}{k^3}$$
 7. $\sum \frac{7^k}{k!}$ 8. $\sum \frac{k^2}{5^k}$ 9. $\sum k^{50} e^{-k}$ *10. $\sum \frac{\cos n\pi}{\sqrt{n}}$

11.
$$\sum \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$$
 12. $\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^3}$ 13. $\sum_{n=3}^{\infty} \frac{1}{\ln(\ln n)}$ *14. $\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^{\frac{3}{2}}}$

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ and } \int_{0}^{1} \frac{1}{x^{p}} dx \text{ both diverge when } p =$$
(A) 2 (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) -1

Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 II. $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ III. $\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$

(A) None (B) II only (C) III only (D) I and II only (E) II and III only

Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$
II.
$$\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$$
III.
$$\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

Which of the alternating series in Exercises 1-10 converge, and which diverge? Give reasons for your answers.

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

2. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$
3. $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$
4. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{10^n}{n^{10}}$
5. $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n}$
6. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}{n}$
7. $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln n}{\ln n^2}$
8. $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right)$
9. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n+1}$
10. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3\sqrt{n+1}}{\sqrt{n+1}}$

Estimate the magnitude of the error involved in using the sum of the first four terms to approximate the sum of the entire series.

11.
$$\sum_{n=1}^{\infty} (-1)^{n+1} (0.1)^n$$

12. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(0.1)^n}{n}$
13. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$
14. $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$
15. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$
16. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n!}{2^n}$

Which of the following statements are true about the series $\sum_{n=2}^{\infty} a_n$, where $a_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$?

- I. The series is alternating.
- II. $|a_{n+1}| \le |a_n|$ for all $n \ge 2$
- III. $\lim_{n \to \infty} a_n = 0$
- (A) None
- (B) I only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

Which of the series in exercises 1-8 converge absolutely, which converge, and which diverge?

1) $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{10}\right)^n$	$2) \sum_{n=1}^{\infty} \left(-1\right)^n \frac{1}{\sqrt{n}}$
3) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3 + 1}$	4) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n!}{2^n}$
5) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+3}$	6) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3+n}{5+n}$
7) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+n}{n^2}$	8) $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$

Which of the following series converge, and which diverge?

9)
$$\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$

10) $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$
11) $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$
12) $\sum_{n=1}^{\infty} \frac{n2^n (n+1)!}{3^n n!}$

The infinite series $\sum_{k=1}^{\infty} a_k$ has *n*th partial sum $S_n = \frac{n}{3n+1}$ for $n \ge 1$. What is the sum of the series $\sum_{k=1}^{\infty} a_k$? (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) 1 (D) $\frac{3}{2}$ (E) The series diverges.

The infinite series $\sum_{k=1}^{\infty} a_k$ has *n*th partial sum $S_n = (-1)^{n+1}$ for $n \ge 1$. What is the sum of the series $\sum_{k=1}^{\infty} a_k$? (A) -1 (B) 0 (C) $\frac{1}{2}$ (D) 1 (E) The series diverges. Determine if the following series converge absolutely, converge conditionally, or diverge. State which test is used.

1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$	2) $\sum_{n=1}^{\infty} \frac{-5}{n}$	3) $\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt{n}}$
$4) \sum_{n=1}^{\infty} \frac{1}{2n^3}$	5) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$	6) $\sum_{n=1}^{\infty} \frac{(-1)^n 3n^2}{n^3 + 1}$
$7) \sum_{n=1}^{\infty} \frac{n+1}{n!}$	$8) \sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{n!}$	9) $\sum_{n=1}^{\infty} \frac{2^n 3^n}{n^n}$
$10) \sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2+1}}$	11) $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2 + 1)}{2n^2 + n - 1}$	12) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$

Which of the following series converge?

I. ,	$\sum_{n=1}^{\infty} \frac{ \sin n }{n^2}$	II. $\sum_{n=1}^{\infty} e^{-n}$	III.	$\sum_{n=1}^{\infty} \frac{n+2}{n^2+n}$
,		<i>n</i> =1		<i>n</i> =1

(A) I only

- (B) II only
- (C) III only
- $(D) \ I \ and \ II \ only$
- (E) I and III only

If the series $\sum_{n=1}^{\infty} a_n$ converges and $a_n > 0$ for all n, which of the following must be true? (A) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ (B) $|a_n| < 1$ for all n (C) $\sum_{n=1}^{\infty} a_n = 0$ (D) $\sum_{n=1}^{\infty} na_n$ diverges. (E) $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.

- 1. The sum of the infinite geometric series $\frac{2}{5} + \frac{6}{20} + \frac{18}{80} + \frac{54}{320} + \dots$ is A) $\frac{8}{15}$ B) $\frac{2}{3}$ C) $\frac{3}{4}$ D) $\frac{5}{4}$ E) $\frac{8}{5}$
- 2. Which of the following series converge? I. $\sum_{n=1}^{\infty} \frac{3}{n}$ II. $\sum_{n=1}^{\infty} \frac{n+1}{n+4}$ III. $\sum_{n=1}^{\infty} \frac{-2}{(-5)^n}$
 - A) I only B) I and II only C) I and III only D) II only E) III only
- 3-8: Determine if the following converge or diverge, state the test used and show all work.

3.
$$\sum_{n=1}^{\infty} \frac{5n-2}{n(3^n)}$$
4.
$$\sum_{n=1}^{\infty} \frac{2n}{3n^2+1}$$
5.
$$\sum_{n=1}^{\infty} \frac{5^n}{3n^2+1}$$
6.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
7.
$$\sum_{n=1}^{\infty} \frac{\sin n}{3^n}$$
8.
$$\sum_{n=1}^{\infty} \frac{n(3^n)}{n!}$$

- 9. Show that the series $\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$ converges by using the integral test.
- 10. Show that the series $\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$ converges by using the comparison test.
- 11. Converge (conditionally/absolutely) or diverge: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n}$
- 12. Converge (conditionally/absolutely) or diverge: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+3}{3n^2+4}$

Show which test was used to find whether each series converges or diverges.

1	Find $\sum_{n=1}^{\infty} \left(\frac{8}{9}\right)^n$
2	Which of these series converges ? I. $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ II. $\sum_{n=1}^{\infty} \frac{1}{(\sqrt{5}+1)^n}$ III. $\sum_{n=1}^{\infty} \frac{2+\sin n}{n}$
3	Consider the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. Use the ratio test to determine if it converges or diverges.
4	The integral test confirms that the series $\sum_{n=1}^{\infty} \left(\frac{e^n}{n^2} \right)$ converges. What is $\int_1^{\infty} \frac{e^1}{x^2} dx$?
5	Multiple Choice Which of these series are divergent? Show work or explain which test was used for each series. a) $\sum_{n=1}^{\infty} \frac{1}{2^n}$ b) $\sum_{n=1}^{\infty} \frac{1}{n!}$ c) $\sum_{n=1}^{\infty} \frac{1}{n}$ d) $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ e) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
6	Multiple Choice Which of the following series converges? Show work or explain which test was used for each series.
	a) $\sum_{n=1}^{\infty} \frac{1}{\ln n}$ b) $\sum_{n=1}^{\infty} \frac{1}{n}$ c) $\sum_{n=1}^{\infty} \frac{1}{e^n}$ d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ e) $\sum_{n=1}^{\infty} n$
7	Show all work for each and determine whether the following series converge or diverge.
	a) $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ b) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$ c) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ d) $\sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$
	e) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ f) $\sum_{n=1}^{\infty} \frac{\sin n}{3^n}$ g) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^2 + 3}}$ h) $\sum_{n=1}^{\infty} \frac{2n}{n^2 - 1}$
8	Does the following converge conditionally or absolutely or does it diverge?
0	$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$

Answers:

 1. 8
 2. I and II
 3. Diverges
 4. -1+e
 5. C
 6. C

- 7. a) Div b) Div c) Conv d) Div e) Conv f) Conv g) Div h) Div
- 8. Converges Conditionally